This calculation guidance has been written in line with the programmes of study taken from the revised National Curriculum for Mathematics (2014). It provides guidance on appropriate calculation methods and progression. The content is set out in yearly blocks under the following headings: addition, subtraction, multiplication and division. This guidance aims to develop, model and explain core understandings and mathematical principles and progression to ensure consistency in the teaching and learning of mathematics in our school.

This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$. It is important that conceptual understanding, supported by the use of representation, is secure for all procedures.

Reinforcement is achieved by going back and forth between these representations.
Mathematics Mastery - At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and deepen their conceptual understanding by tackling differentiated, challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures, but demonstrate their understanding of these procedures, through the use of Concrete Pictorial Abstract CPA as appropriate, and in reasoning and problem solving activities

This policy outlines the different calculation methods which should be used as outcomes in the EYFS curriculum and the national curriculum in Y1 to Y6. To ensure consistency throughout school this policy outlines the following Whole School and Year Group expectations:

- A consistent approach to teaching and learning
- Agreed calculation strategies
- Non-negotiable methods for written and mental calculations
- Precise mathematical vocabulary to be used (see additional guidelines)
- Consistent approach to setting out calculations
-Clear outcomes for every year group and key stage.

EYFS

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10, the relationships between them and the patterns within those numbers (Statutory Framework 2021)

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a sense of the number system through the use of counting concrete objects.	Children are encouraged to gain a sense of the number system through the use of counting concrete objects.	Children use concrete objects to make and count equal groups of objects.	Children use concrete objects to count and share equally into 2 groups
They combine objects in practical ways and count all.	They understand subtraction as counting out.	They will count on in twos using a bead string and number line.	They count a set of objects and halve them by making two equal groups.
They understand addition as counting on. They will count on in ones and twos using objects, cubes, bead string, reknerek and number line.	They begin to count back in ones and twos using objects, cubes, bead string and number line.	They understand doubling as repeated addition. $2+2=4$	They understand sharing and halving as dividing by 2.

They begin to use + and =
They are encouraged to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation

They use concrete and pictorial representation to record their calculations. They begin to use - and $=$ Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation

They use concrete and pictorial representation to record their calculations.

They use concrete and pictoria representation to record their calculations.

Year 1 Addition			
Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later	$=$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10 . $9+5=14$ 114	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7.' ' 8 is 3 more than 5.'

Year 2 Addition			
Objective \& Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	$50=30=20$ Model using dienes and bead strings	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part-part whole	Children explore ways of making numbers within 20		$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts	$\begin{aligned} & \square_{\square}+\square_{\square}=\square_{\square} \square_{\square} \square_{\square} \\ & \square \square \square \square \square \square \square \square \end{aligned}$		$3+4=7$ leads to $30+40=70$ leads to $300+400=700$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$

Objective \& Strategy

Year 3 Addition			
Objective \& Strategy	Concrete	Pictorial	Abstract
Column Addition—no regrouping (friendly numbers) Add two or three 2 or 3- digit numbers.	Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column Addition with regrouping	Exchange ten ones for a ten. Model using numicon and pv counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	$\begin{aligned} & \begin{array}{l} 20+5 \\ 40+8 \end{array} \\ & \frac{40}{60+13}=73 \\ & \begin{array}{l} \text { Start by partitioning } \\ \text { the numbers before } \\ \text { formal column to } \\ \text { show the exchange. } \end{array} \begin{array}{r} 536 \\ \end{array} \\ & \frac{+85}{621} \end{aligned}$

Objective \& Strategy

Year 1 Subtraction			
Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part-Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what is the other part? $10-6=4$	Use pictorial representations to show the part	Move to using numbers within the part whole model.
Make 10	$14-9$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5	 Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10? How many left to take off?
Bar Model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Year 2 Subtraction			
Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest	Use a number line to count on to next ten and then the rest.	$93-76=17$

Year 3 Subtraction			
Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to $p v$ counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange	$\begin{array}{r} 45 \\ -29 \\ \hline 16 \end{array}$ Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns Then move to formal method.

Year 4-6 Subtraction			
Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange- see Y3	$\begin{array}{r} { }^{2} 8^{10} x^{1} 0^{\circ} 8^{1} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for placeholders.
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Year 1 Multiplication			
Objective \& Strateg V	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8 \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. $l_{2} \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16 \quad 18 \quad 20$	Count in multiples of a number aloud Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw \mathcal{S} to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

Objective \& Strategy

Year 2 Multiplication			
Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together
Counting in multiples of $2,3,4,5$, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 111 111 111 	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Year 2 Multiplication			
Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. $0 \bigcirc O$ 	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \\ & \begin{array}{l} \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ \\ \\ \\ \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array} \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=8 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences

Year 4 Multiplication				
Objective \& Strategy	Concrete	Pictorial	Abstract	
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each column starting with the ones making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying numbers and show addition alongside $210+35=$	by one-digit the clear grid.
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping $321 \times 2=642$ Always multiply the ones first The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method may be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	$\begin{array}{r} 327 \\ \times \quad 4 \\ \hline 28 \\ 80 \\ \hline 1200 \\ \hline 1308 \end{array}$	is may lead a compact ethod.

Year 5/6 Multiplication			
Objective \& Strategy	Concrete	Pictorial	Abstract
Column Multiplication for 3 and 4 digits $\times 1$ digit.	It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving	

Year 6 Multiplication			
Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to 2 decimal places by a single digit.			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.
			$3 \cdot 19$
			$\frac{x 8}{25 \cdot 5}$
			When appropriate, children can use their place value knowledge to make the number being multiplied 10,100 or 1000 times bigger and then multiply and make the answer 10,100 or 1000 times smaller.
			$\begin{aligned} & x^{319}(\times 100) \\ & \frac{852(+100)}{255}=25.52 \end{aligned}$

Objective \& Strategy

Year 3 Division			
Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rlr} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Year 6 Long Division

Step 1-a remainder in the ones

```
hto
041 R1
\(4 \longdiv { 1 6 5 }\)
```

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

> | th hto |
| :--- |
| $0400 \mathrm{R7}$ |
| 8207 |

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7

Year 6 Long Division

Step 1 continued...

> | hto |
| ---: |
| 061 |
| 247 |
| $\frac{-4}{3}$ |

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

$$
\begin{array}{r}
\text { th hto } \\
0402 \\
\hline \begin{array}{r}
1609 \\
\frac{-8}{1}
\end{array}
\end{array}
$$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Year 6 Long Division

Step 2-a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
t o	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$=\frac{4}{18}$	-4 18	-4 18
	-18	-18
	0	0
Divide 2 into 18. Place 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	The division is over since there are no more digits in the dividend. The quotient is 29 .

Year 6 Long Division

Step 2-a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & \frac{h^{1} \circ}{1} \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{aligned} & \quad h t o \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{0} \end{aligned}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{aligned} & h t o \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \end{aligned}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{aligned} & h t o \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \end{aligned}$ Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h: 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{aligned} & h+0 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t 0 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

